

Risk assessment of organophosphate ester flame retardants in aquatic environments using EQS derivation with up-to-date REACH and research monitoring data

J. Castro-Jiménez^a, G. Deviller^b

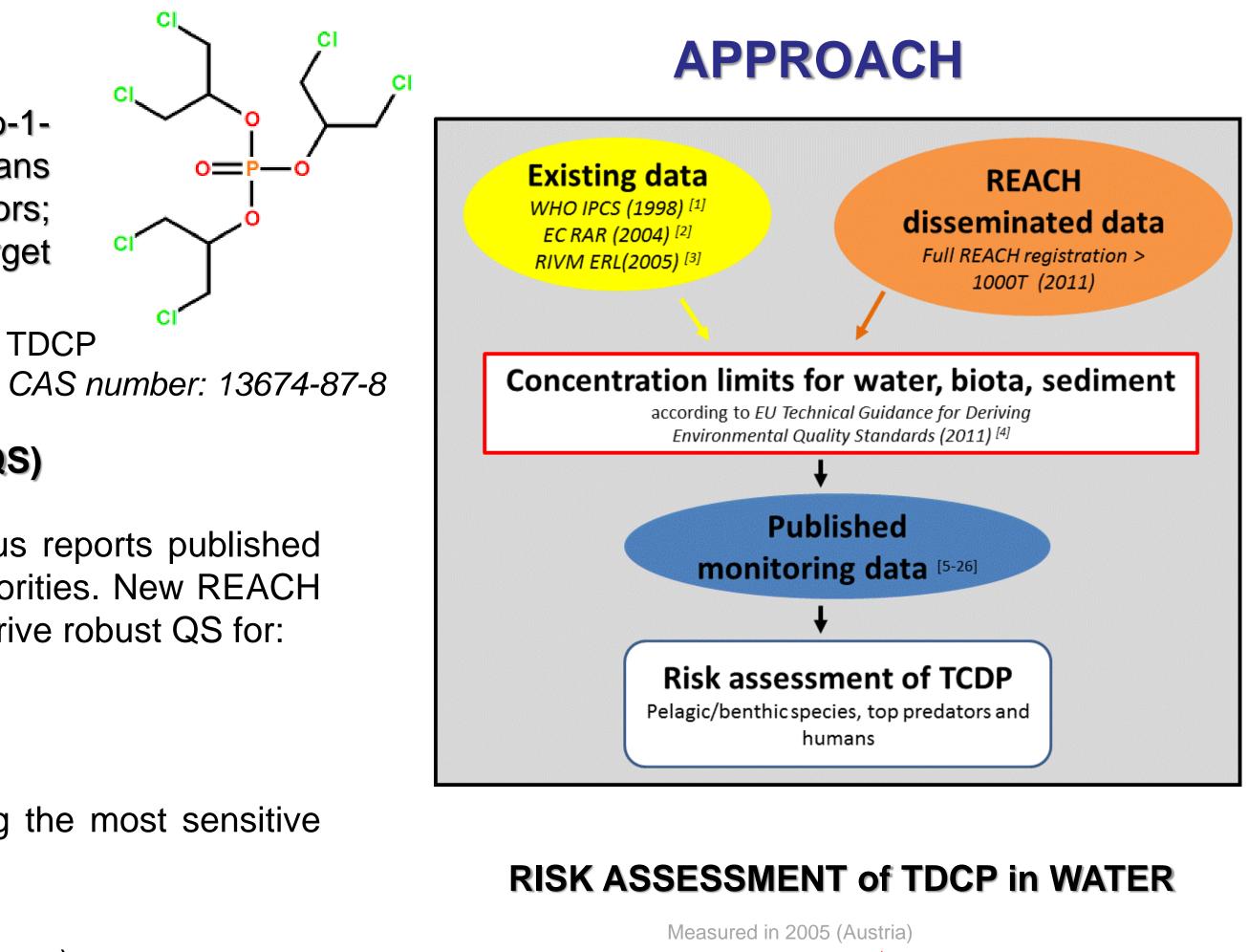
^a Aix Marseille University, CNRS/INSU, University of Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 13288, Marseille, France; ^b Deviller Environmental Risk Assessment of Chemicals (DERAC) Consultancy, 17 Bd des Chênes, 13009, Marseille, France

INTRODUCTION

Organophosphate esters (OPEs), are a group of organophosphorus flame retardants (PFRs) and plasticizers in expanding use world-wide (annual global consumption of PFRs) reached ~ 300 000 tons in 2011 and a 5% annual increase expected). Latest scientific works highlighted that some OPEs could exhibit similar properties to persistent organic pollutants (POPs), meaning they can be highly persistent, prone to long-range atmospheric transport, can bioaccumulate and may have adverse effects in the environment and humans.

Recent progress in the EU chemical policies together with the increasing research efforts on the monitoring of OPEs concentrations and on the study of their environmental partitioning and fate represent interesting opportunities to investigate if these chemicals could present a risk for environmental organisms and humans. First, the new data generated and disseminated through the REACH regulation framework and the up-to-date guidance to derive Environmental Quality Standards (EQS) under the Water Framework Directive (WFD), allow to assess safe concentrations, the so-called Quality Standards (QS), for pelagic and benthic species, top predators and humans. Second, the increase of the number and quality of field measurements of OPE concentrations in relevant environmental compartments (e.g. air, inland and marine surface waters, sediments and biota) provide current OPE environmental levels.

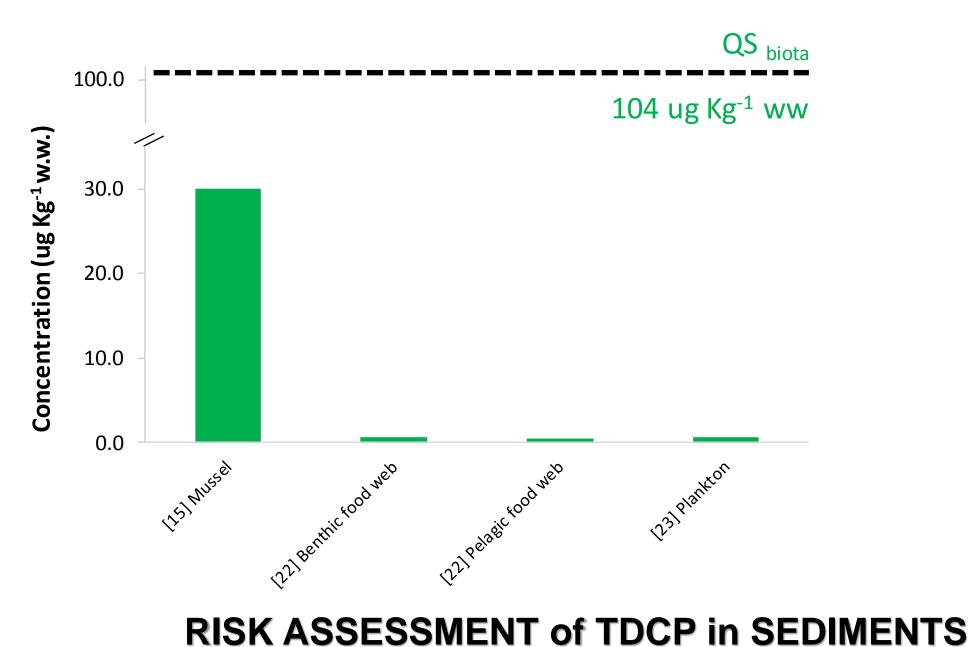
OBJECTIVES


The objectives of this work are: (1) to estimate safe levels (in water, sediment and biota) of Tris [2-chloro-1-(chloromethyl ethyl)] phosphate (TDCP), one of the most widely used organochlorine OPEs, for humans consuming drinking water / fishery products, pelagic and benthic species and birds / mammals top predators; (2) to assess the suitability and availability of monitoring data in order to identify potential risks for target organisms and humans due to environmental exposure to TDCP.

RESULTS and DISCUSSION

ESTIMATED (SAFE) THRESHOLD CONCENTRATIONS: Quality Standards (QS)

	Protection Objective	Threshold levels	Rationale / Uncertainties	Existing data were available in three previous reports published	Published monitoring data [5-26]	
WATER	PELAGIC community freshwater	1.1 μg L ⁻¹	Driven by acute toxicity on the most sensitive species: fish	by international, European and national authorities. New REACH data disseminated by ECHA allowed us to derive robust QS for:		
	PELAGIC community seawater	0.1 μg L ⁻¹	Driven by acute toxicity on the most sensitive species: fish	WATER* Freshwater: QS fw = 0.9 μg L ⁻¹	Risk assessment of TCDP Pelagic/benthic species, top predators and humans	
	HUMAN health <i>via</i> consumption of drinking water	5.9 μg L ⁻¹	Threshold level derived from repeated dose toxicity (DNEL) with an additional assessment factor for carcinogenicity			
BIOTA (and WATER <i>via</i> concentration conversion)	TOP PREDATORS freshwater	140 µg Kg⁻¹ biota	Mammals and birds reliable data available	(humans consuming fishery products being the most sensitive		
	and corresponding value in water	1.2 μg L ⁻¹	Driven by mammals toxicity Not assignable experimental BCF and default BMF	group after water concentration conversion) Seawater: QS sw = $0.1\mu g L^{-1}$ (pelagic species being the most sensitive group)	RISK ASSESSMENT of TDCP in WATER Measured in 2005 (Austria)	
	TOP PREDATORS seawater	140 µg Kg⁻¹ biota	Mammals and birds reliable data available			
	and corresponding value in water	1.2 μg L ⁻¹	Driven by mammals toxicity Not assignable experimental BCF and default BMF		QS _{fresh water} 1.2 - 1.1 - 0.9 ug L ⁻¹	
	UMAN health via consumptionshery products)104 µg Kg ⁻¹ biota		BIOTA (freshwater and seawater) QS _{biota} = 104 µg Kg ⁻¹			
	and corresponding value in freshwater and seawater	0.9 µg L ⁻¹	with an additional assessment factor for carcinogenicity Not assignable experimental BCF and default BMF	(humans consuming fishery products being the most sensitive	e 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.1 ug L ⁻¹ 0.1 ug L ⁻¹	
SEDIMENT	BENTHIC community freshwater	390 µg Kg⁻¹dw	Chronic toxicity data available on three species with different living and feeding conditions Concentrations fluctuations in the <i>Chironomus riparius</i> test	group) SEDIMENTS		
			(most sensitive species) might led to over protective QS	Freshwater: QS _{sed} fw = 390 μg Kg ⁻¹ dw	est water we have no	
	BENTHIC community seawater	on th living 78 μg Kg ⁻¹ dw Cond the C (mos	Chronic toxicity data available on three species with different living and feeding conditions Concentrations fluctuations in the <i>Chironomus riparius</i> test	Seawater: QS _{sed} sw = 78 μg Kg ⁻¹ dw * New chronic data on invertebrates were insufficient to reduce the uncertainty of the QS waters because they are not the most sensitive species.	RISK ASSESSMENT of TDCP in BIOTA	
			(most sensitive species) might led to over protective QS		QS biota	


TDCP

Monitoring data (environmental concentrations of TDCP in water, sediment and biota) were extracted from available scientific literature (mostly peer-reviewed) published over the last ten years. Results revealed that most measurements have been carried out in inland surface waters (in particular rivers) with a general lack of data in marine waters. Few studies have been performed in sediments (and mostly from rivers and lakes) and very few data exists for biota. Many different sampling, analytical approaches and techniques were employed to quantify TDCP concentrations in selected matrixes. A particular issue was found with the analysis of TDCP (and others OPEs) in biota. Different parts of the organisms were analyzed (e.g. leaver, muscle, eggs, whole organism) and concentrations were expressed in different units (e.g. normalized by lipids, as dry weigh, as wet weight) difficult to compare and not always useful for the scope of the present work.

CONCLUSIONS and RECOMMENDATIONS

- ✓ Disseminated data of REACH registered dossiers from ECHA website haven't been reviewed by the authorities and often the information provided is too scarce to allow an in-depth review of their reliability.
- Chronic data on fish (currently missing) would allow to reduce the uncertainties of the QS for waters.

QS sediment fresh water

QS sediment seawater

78 ug Kg⁻¹ dw

390 ug Kg⁻¹ dw

Although the reported TDCP environmental concentrations were generally below the estimated QS, these safe levels were overpassed in some environments indicating a potential risk. In addition, existing and new data on degradation don't allow to disregard the potential high persistency of TDCP, which could result in the increase of its environmental concentrations and stocks in the near future. So more efforts on the monitoring side (in particular in marine environments) and on the accurate determination of TDCP degradation rates under environmental conditions are recommended.

QS should be derived for other OPEs widely used. \checkmark

An effort should be performed to generate reliable and comparable data on biotic matrixes.

References

[1] WHO IPCS. 1998. Flame Retardants: Tris(Chloropropyl) Phosphate and Tris(2-Chloroethyl) Phosphate. Environmental Health Criteria, Vol. 209. Geneva, Switzerland: World Health Organization; [2] European Commission JRC. 2004. TDCP. European Risk Assessment Report, Vol. 426. Ispra, Italy: European Chemicals Bureau, Institute for Health and Consumer Protection; [3] RIVM report 601501024/2005. Environmental Risk Limits for several phosphate esters, with possible application as flame retardant.; [4] European Commission - Guidance Document No. 27. Technical Report - 2011 – 055. Guidance For Deriving Environmental Quality Standards of Common Implementation Strategy for the WFD.; [5] Khan et al., Sci. Total Environ. 2016, 565, 346-359.; [6] Li et al., Water Res. 2014, 53-61.; [7] Wang et al., Environ. Pollut. 2015, 198, 172-178.; [8] Andresen et al., Sci. Total Environ. 2004, 332 155–166.; [9] Martínez-Carballo et al., Sci. Total Environ. 2007, 388, 290-299.; [10] Van der Veen & de Boer. Chemosphere 2012, 88, 1119-1153., [11] Cristale et al., Environ. Pollut. 2013, 172, 163-169.; [12] Cristale et al., Environ. Int. 2013, 59, 232-243., [13] Wolschke et al., Environ. Pollut., 2015, 206, 488-493.; [14] Marklund et al., Environ. Sci. Technol. 2005, 39, 7423-7429.; [15] Green et al., NIVA Report 5569, 2008.; [16] Cristale et al., Environ. Res. 2016, 144, 11–18.; [17] Bacaloni et al., Environ. Sci. Technol. 2008, 42, 1898–1903.; [18] Venier et al., Environ. Sci. Technol. 2014, 48, 9563–9572.; [19] Huan et al., Chin. J. Anal .Chem. 2012, 40, 1693–1697.; [20] Andersen et al., Environ. Toxicol. Chem. 2007, 1081–1089.; [21] Hu et al., Mar. Pollut. Bull. 2014, 569–574.; [22] Brandsma et al., Sci. Total Environ. 2015, 505, 22–31.; [23] Greaves et al., Environ. Res. 2016, 150, 255– 263.; [24] Stachel et al., J.Environ. Sci. Health A, 2005, 40, 265-287.; [25] Cao et al., Environ. Toxicol. Chem. 2012, 31, 1478-1484., **[26]** Chung & Ding. Anal. Bioanal. Chem. 2009, 95, 2325-2334

Dr. Javier Castro Jiménez

Mediterranean Institute of Oceanography Luminy Campus – OCEANOMED Bât. Méditerranée, 13288 Marseille Cedex 9 – France E-mail: javier.castro-jimenez@mio.osupytheas.fr Tel: +33 (0)4 86 09 05 94 Fax: +33 (0)4 86 09 06 41

800.0

600.0

400.0

80.0

70.0

60.0

50.0

40.0

30.0

20.0

10.0

0.0